Mixed integer programming model for synchronizing night urban bus services in Santiago City

Cristian E. Cortes ${ }^{a}$, Pablo A. Rey ${ }^{a}$, Cristiam Gil ${ }^{a}$, Antonio Gschwender ${ }^{b}$, Cesar Nuñez ${ }^{b}$
${ }^{a}$ Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile
${ }^{b}$ Directorio de Transporte Público Metropolitano, Santiago de Chile

Bus Synchronization Timetabling Problem

The problem addressed in this work is the following

- Given a network of night urban bus services, the goal is to maximize the number of encounters of buses belonging to different lines that are able to perform a synchronized operation of passengers' transfers at the bus stops where that operation is possible to define a fixed schedule, satisfying systems conditions.
- Trips that sincronize arrive within a time window of allowable waiting time.
- Trips may hold at certain bus stops where such an operation is allowed
- Maximum dwelling time per trip and bus stop capacity are addressed.
- A border limit constraint is proposed to deal with the transition between day shift and night shift.

Relevance

Decision variables
$Y_{p q b}^{i j}\left\{\begin{array}{l}1 \text {, if the arrivals of trip } p \text { of line } i \text { and trip } q \text { of line } j \text { at node } b \text { are } \\ \text { separated by a time that is within the required waiting time limit. } \\ 0 \text {, otherwise. }\end{array}\right.$
$x^{i} \quad$ departure time of the first trip of line $i, x^{i} \in\left[0, h^{i}\right]$
$z_{b}^{i} \quad$ dwelling time of line i at transfer node $b, z_{b}^{i} \in\left[0, L_{b}^{i}\right]$
$S_{b}^{i} \quad$ cumulative dwelling times of line i before its arrival at transfer node b

BTP Model including dwelling times at transfer stops

$$
\begin{aligned}
& F_{B T P}=\max \sum_{i \in 1} \sum_{j \in(i)} \sum_{b \in B_{j}} \sum_{j=1}^{f_{i}} \sum_{q=1}^{f_{j}} Y_{p q b}^{i j} \\
& x^{i} \leq h^{i} \quad \forall i \in I
\end{aligned}
$$

New valid inequalities

$$
\exists i \in I, \quad X_{i}=0
$$

(6)
if $\left(0+t_{b}^{j}+(q-1) \cdot h^{j}+0\right)-\left(h^{i}+t_{b}^{i}+(p-1) \cdot h^{i}+L_{i}^{b} \cdot O_{b}^{i}\right)>0$
or $\left(0+t_{b}^{j}+(p-1) \cdot h^{i}+0\right)-\left(h^{j}+t_{b}^{j}+(q-1) \cdot h^{j}+L_{j}^{b} \cdot O_{b}^{j}\right)>0$ then $Y_{p q b}^{i j}=0$
$Y_{p q b}^{i j}=Y_{p+k, q+m, b}^{i j}$
Such that $m, k \in \mathbb{N}$ where $m \cdot h^{j}=k \cdot h^{i}=\operatorname{LCM}\left(h^{i}, h^{j}\right)<T$
$\sum_{q=q^{\prime}}^{q^{\prime}+\left[L L_{i}^{b} / h^{i}\right\rfloor} Y_{p q b}^{i j} \leq 1+\left(Z_{b}^{i} / h_{j}\right)$

Experimental data

- The optimization was perform over 20 services (both ways each) and 30 bustops (8 of them with dwelling time allowed).
- The length of planning horizon (T) is 239 minutes.
- The travel times from depots of lines to nodes $\left(t_{b}^{i}\right)$ are in the range of 0 to 98 minutes.
- The minimum and maximum separation time between synchronized trips arrivals at nodes $\left(\underline{W}_{b}, \bar{W}_{b}\right)$ are 5 and 10 minutes, respectively.
- The maximum dwelling time allowed (L) at any node is 3 minutes.
- The headway of services $210,401 \mathrm{~N}, 301$ were set in 10 minutes. Headway of others services were set in 30 minutes.
- Each bus stop has a capacity of 8 vehicles.
- For this intance, border condition for each line was determined as half of its headway

Variables	$2,618,056(10,944)$
Constraints	$832,673(20,002)$
Solve time (sec)	3264

All computations were coded in AMPL using the solver CPLEX 12.6 on a computer with CPU Intel Core i5, 2.20 GHz with 12 GB of RAM.

Results

4652 synchronizations achieved between trips of lines at transfer nodes where the departure times (in minutes) of their first trips are:

104R	0
104 I	10
107I	4
107R	4
112NI	1
112NR	12
201 I	15
201 R	1
210 I	5
210 R	3
230 I	6
230 R	8
301 I	3
301 R	4
303 I	14
303 R	14
346 NI	2
346 NR	12
405 I	2
405 R	2

426 I	14
$426 R$	13
506 I	5
$506 R$	6
5131	15
513 R	12
5161	1
$516 R$	15
B02NI	15
B02NR	3
B30NI	12
B30NR	12
B31NI	7
B31NR	5
F28NI	9
F28NR	7
F30NR	4
F30NI	0
401NR	1
401NI	0

Holding times of lines at transfer nodes are:

	Rejas	Bellavista	Departamental	Militar	Irarrazabal	Moneda	StaLucia	Plazaltalia
107R	3	0	3	0	0	0	0	0
112NI	0	0	0	2	0	0	0	0
112NR	0	0	0	3	0	0	0	0
2011	0	0	2	0	0	3	0	0
2301	0	0	0	0	0	0	3	0
230R	0	0	0	0	0	0	2	0
3031	0	0	0	0	0	3	0	0
303R	0	0	0	0	0	0	0	3
346 NI	0	0	0	0	0	3	0	0
4051	2	0	0	0	0	1	0	0
405R	3	0	0	0	0	0	0	1
4261	0	0	0	2	0	3	0	3
426R	0	0	0	3	0	2	0	1
5061	0	0	0	0	1	0	0	0

The trips arriving between minute 135 and 165 of the planning horizon at bus stop Metro Irrarazabal are:

